\qquad

Any given element can have more than one isotope. To distinguish between the different isotopes of an atom, the element is named with its mass number, for example lithium-7. Remember that the mass number is the number of protons and neutrons. When symbols are used to represent an isotope the mass number is written next to the symbol on the top left. The atomic number is written on the bottom left. Recall that the atomic number is the number of protons.
EXAMPLES

${ }_{3}^{7} \mathrm{Li} \stackrel{\text { Lithium-7 }}{3 \text { protons }} \begin{aligned} & 4 \text { neutrons }\end{aligned}$

Answer the following questions about atoms.

1. The identity of an atom is determined by the number of \qquad .
2. The particle(s) found inside the nucleus are called: \qquad -
3. The number of protons and neutrons combined is called the \qquad .
4. In large atoms the number of protons is \qquad than the number of neutrons.
5. The number of protons is also called the \qquad .
6. Isotopes have the same number of \qquad , but different numbers of \qquad .
7. The number of protons found in a sulfur atom is \qquad .
8. The number of neutrons found in an aluminum-27 atom is \qquad .
9. The number of electrons found in a zinc atom is \qquad .
10. What is the name of the element with 82 protons? \qquad .

Give the symbols for the nuclides described by the following particles. Include the atomic number and the mass number.

11. 92 protons, 145 neutrons
12. 8 protons, 10 neutrons
13. 82 protons, 125 neutrons
14. 80 protons, 119 neutrons
15. 20 protons, 20 neutrons
16. 22 protons, 23 neutrons
17. 18 protons, 22 neutrons
18. 25 protons, 32 neutrons

Determine the number of protons and neutrons from the following symbols.
19. ${ }_{5}^{10} \mathrm{~B}$
23. ${ }_{66}^{165} \mathrm{Dy}$
27. ${ }^{126} \mathrm{Te}$
20. $\quad{ }_{7}^{15} \mathrm{~N}$
24. ${ }^{56} \mathrm{Fe}$
28. ${ }^{35} \mathrm{Cl}$
21. ${ }_{34}^{79} \mathrm{Se}$
25.
${ }^{151} \mathrm{Sm}$
29. ${ }^{197} \mathrm{Ag}$
22. ${ }_{50}^{119} \mathrm{Sn}$
26. ${ }^{195} \mathrm{Pt}$
30. $\quad{ }_{41}$?
\qquad

Any given element can have more than one isotope. To distinguish between the different isotopes of an atom, the element is named with its mass number, for example lithium-7. Remember that the mass number is the number of protons and neutrons. When symbols are used to represent an isotope the mass number is written next to the symbol on the top left. The atomic number is written on the bottom left. Recall that the atomic number is the number of protons.

Answer the following questions about atoms.

1. The identity of an atom is determined by the number of \qquad protons
2. The particles) found inside the nucleus are called: nucleons
3. The number of protons and neutrons combined is called the mass number.
4. In large atoms the number of protons is more than the number of neutrons.
5. The number of protons is also called the atomic number.
6. Isotopes have the same number of protons, but different numbers of neutrons.
7. The number of protons found in a sulfur atom is 16 .
8. The number of neutrons found in an aluminum- 27 atom is \qquad .
9. The number of electrons found in a zinc atom is \qquad 30 -.
10. What is the name of the element with 82 protons? lead

Give the symbols for the nuclide described by the following particles. Include the atomic number and the mass number.
11. 92 protons, 145 neutrons 92 U
15. 20 protons, 20 neutrons
${ }_{20}^{40} \mathrm{Ca}$
12. 8 protons, 10 neutrons
13. 82 protons, 125 neutrons ${ }_{82}^{207} \mathrm{~Pb}$
14. 80 protons, 119 neutrons $\quad 199 \mathrm{Hg}$
$\begin{array}{ll}\text { 16. } 22 \text { protons, } 23 \text { neutrons } & 45 \mathrm{Ti} \\ & 22 \mathrm{Ti} \\ \text { 17. } 18 \text { protons, } 22 \text { neutrons } & 18 \mathrm{Ar}\end{array}$
18. 25 protons, 32 neutrons ${ }_{25}^{7} 7 \mathrm{Mn}$

Determine the number of protons and neutrons from the following symbols.

| 19. | ${ }_{5}^{10} \mathrm{~B}$ | $5 p^{+}, 5 n^{0}$ | 23. | ${ }^{165} \mathrm{Dy}$ | $66 p^{+}, 99 n^{\circ}$ | 27. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |${ }^{126} \mathrm{Te} 52 p^{t}, 74 n^{0}$

