Product Rule for Exponential Expressions

Use your calculator to simplify each expression below. The ^ key is used to enter an exponent. Then, determine which of the answer choices for each expression is equivalent to your calculator's answer.

$$2^3 \cdot 2^5 =$$

$$(0.5)^4 \cdot (0.5)^2 =$$

$$\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^5 =$$

(A)
$$2^{15}$$

$$(A) (0.5)^2$$

(B)
$$2^2$$

(B)
$$(0.5)^6$$

$$(C)$$
 2^3

$$(C) (0.5)^8$$

$$(A) \quad \left(\frac{2}{3}\right)^{10}$$

(B)
$$\left(\frac{2}{3}\right)^7$$

(C)
$$\left(\frac{2}{3}\right)^3$$

Look at the results above. Describe the pattern in words.

Pattern:

Do the bases have to be the same for this pattern to hold?

Evaluate $2^3 \cdot 3^4$. Does it equal 6^7 ?

Express the pattern using symbols.

$$b^n \cdot b^m =$$

Write and simplify your own problem that demonstrates the **Product Rule**:

Quotient Rule for Exponential Expressions

Use your calculator to simplify each expression below. Determine which of the answer choices for each expression is equivalent to your calculator's answer.

$\frac{2^6}{2^3} =$	$\frac{(0.5)^8}{(0.5)^2} =$	$\frac{\left(\frac{2}{3}\right)^{12}}{\left(\frac{2}{3}\right)^3}$
(A) 2 ⁹ (B) 2 ³ (C) 2 ²	(A) (0.5) ⁴ (B) (0.5) ¹⁰ (C) (0.5) ⁶	(A) $\left(\frac{2}{3}\right)^{36}$ (B) $\left(\frac{2}{3}\right)^{9}$ (C) $\left(\frac{2}{3}\right)^{4}$

Do the bases have to be the same? Explain how you know. Provide a counterexample.

Describe the pattern in words.

Pattern:

Express the pattern using symbols.

$$\frac{b^n}{b^m} =$$

Write and simplify your own problem that demonstrates the **Quotient Rule**:

Zero as an Exponent

Use the quotient rule to simplify $\frac{2^3}{2^3}$.

Simplify $\frac{2^3}{2^3}$ · using your calculator.

Based on the results above, what is a good definition for 2^{0} ?

Use the quotient rule to simplify $\frac{3^5}{3^5}$.

Evaluate $\frac{3^5}{3^5}$ · using your calculator.

Based on the results above, what is a good definition for 3° ?

Predict the value of $(0.5)^0$. Check your prediction using your calculator.

Consider 0^0 . This could have come from a division such as $\frac{0^3}{0^3}$. What do you know about division by 0?

Is 0^0 defined? Explain.

Write and simplify your own problem that demonstrates what happens when **zero is an exponent**:

Negative Exponents

First, use the quotient rule to simplify each expression. Then use "cancellation" to simplify the expanded expression. Finally, rewrite the expression as a fraction with an exponent on the base in the denominator.

$$\frac{2^6}{2^7} =$$

$$\frac{2^6}{2^7} = \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} =$$

$$\frac{(0.5)^3}{(0.5)^5} =$$

$$\frac{(0.5)^3}{(0.5)^5} = \frac{0.5 \cdot 0.5 \cdot 0.5}{0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5} =$$

$$\frac{\left(\frac{2}{3}\right)^2}{\left(\frac{2}{3}\right)^5} =$$

$$\frac{\left(\frac{2}{3}\right)^2}{\left(\frac{2}{3}\right)^5} = \frac{\frac{2}{3} \cdot \frac{2}{3}}{\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}} =$$

Write an equivalent expression for x^{-3} using a positive exponent.

Describe in your own words how to change an expression with a negative exponent to an equivalent expression with a positive exponent. Then, write and simplify your own problem containing a **negative exponent**.

Power Rule for Exponential Expressions

Use your calculator to simplify each expression below. Determine which of the answer choices for each expression is equivalent to your calculator's answer.

$(2^3)^5$	$\left[\left(0.5\right)^{6}\right]^{2}$	$\left[\left(\frac{2}{3}\right)^2\right]^3$
(A) 2 ⁸ (B) 2 ²⁴³ (C) 2 ¹⁵	(A) $(0.5)^{12}$ (B) $(0.5)^{8}$ (C) $(0.5)^{5}$	(A) $\left(\frac{2}{3}\right)^5$ (B) $\left(\frac{2}{3}\right)^6$
		(C) $\left(\frac{2}{3}\right)^8$

Describe the pattern in words.

Pattern:

Express the pattern using symbols.

$$(b^n)^m =$$

Write and simplify your own problem that demonstrates the **Power Rule**: